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Shadow Penumbras for Complex Objects by Depth-
Dependent Filtering of Multi-Layer Depth Images

Brett Keating and Nelson Max
Lawrence Livermore National Laboratory and UC Davis

Abstract. This paper presents an efficient algorithm for filtering multi-layer depth images
(MDIs) in order to produce approximate penumbras. The filtering is performed on a MDI that
represents the view from the light source. The algorithm is based upon both ray tracing and the
z-buffer shadow algorithm, and is closely related to convolution methods. The method’s
effectiveness is demonstrated on especially complex objects such as trees, whose soft shadows
are expensive to compute by other methods. The method specifically addresses the problem of
light-leaking that occurs when tracing rays through discrete representations, and the inability of
convolution methods to produce accurate self-shadowing effects.

1 Introduction and Background

1.1 Introduction

Depth images are images that contain the depth of a visible object at each pixel,
possibly along with other relevant scene information such as surface color. They are
extremely common in computer graphics; the well-known and often-used z-buffer is a
special case of a depth image. Depth images can be obtained synthetically by using a
3-D rendering engine, or they can be captured from real-life scenes by using special
range-finding technologies or by finding correspondences between photographs.

An image-based rendering technique known as view interpolation uses depth
images as input to synthesize new images [4]. This technique enjoys a rendering cost
independent of geometric complexity. One major problem with view interpolation is
the occurrence of holes in the synthesized images. To help solve this, Max extended
the view interpolation technique to handle multiple depths at each pixel in a multi-
layer depth image (MDI) [16]. MDIs contain additional important information about
hidden surfaces at each viewpoint, which allows for reprojections that contain far less
holes. Shade et al. proposed layered depth images (LDIs), which are multi-layer depth
images optimized for rendering speed [24]. Each pixel in a layered depth image is
called a layered depth pixel, each of which is a sorted collection of depth pixels.

The success of image-based rendering encouraged researchers to extend the
technique so that it could produce general rendering effects, such as global
illumination [14,17]. Also, image-based objects are beginning to be used in place of
geometric objects [24]. This provides the motivation for the current work, which
presents a technique for computing penumbras cast by image-based objects.

We propose a method for calculating penumbras that operates on a single multi-
layer depth image, rendered from the point of view of the light source. Although
image-based rendering motivates this work, the proposed method can be used in
conjunction with virtually any rendering paradigm. We use an efficient incremental
ray-tracing algorithm, similar to that used in [14]. The rays essentially perform an
approximate integration operation on the visibility function, and this can be re-
interpreted as a filtering scheme. Viewing the algorithm as a filtering scheme allows
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us to merge our algorithm with percentage-closer filtering [22], make direct
comparisons with convolution methods [15,25], and weight the contribution of each
ray to the final shadow.

1.2 Previous Work in Soft Shadow Calculation

The calculation of a penumbra can be viewed as the problem of computing the
partial visibility of a light source from points on a surface. The darkness of the
shadow cast by a light source at a point corresponds exactly to the occluded fraction
of the source. Penumbra calculation is a difficult problem that has given rise to
numerous different solutions, each with their own set of advantages and
disadvantages [31].

Perhaps the most obvious approach to solving this problem would be to
construct a frustum from a point on the surface back towards the light source. By
doing so, one can clip objects to the frustum, effectively clipping objects against the
extent of the light source. Tanaka et al. propose a fairly fast way to accomplish this
calculation [27]. They use a ray-oriented buffer to cull much of the geometry in the
scene. Then for the remaining objects, they use a fast silhouette generation algorithm
in combination with a sophisticated clipping technique to quickly find the occluded
area of the light source.

Discontinuity meshing is another exact method for calculating penumbra regions
[7,11,13,26]. This technique partitions surfaces into regions within which all points
view the light source as having the same topological configuration of vertices and
edges. The visible area of the light source can be interpolated exactly within each of
these regions. Collectively, these regions form a mesh known as a discontinuity mesh.
Although this method is accurate, it can suffer from numerical instability and is also
expensive to compute, especially for scenes containing a large number of objects.
Discontinuity meshing methods are often used in a radiosity setting. There are several
ways to compute soft shadows in radiosity, notably [5,21].

Since this problem tends to be expensive and difficult to solve exactly, much
research has been done on finding approximate solutions [25,31]. Most of these
solutions approximate an area light source by sampling its extent. One such
approximation technique that can yield accurate soft shadows is distributed ray
tracing [6]. This popular technique fires shadow rays from a point on a surface to
sample points on a light source. The fraction of shadow at the surface point is equal to
the proportion of rays that hit an intermediate object before reaching the light. This
method is intuitive and completely general, however many rays are necessary to
compute accurate penumbras. The current technique is closely related to this method,
as is cone tracing [1].

The accumulation buffer is another method that samples the extent of the light
source [9]. It does so by approximating it as a collection of point light sources. A
visibility algorithm, such as a z-buffer, calculates a hard shadow (no penumbra) from
the point of view of each point light source. These hard shadows are averaged in order
to produce a soft shadow. This method requires many sample lights for adequate
shadow quality, however view interpolation can be applied between samples to
increase efficiency [4]. Other closely related approaches include [2,10].
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Soft shadows have also been approximated using convolution techniques. These
techniques use the fast Fourier transform to efficiently convolute an image of the light
source with an image of the blockers, and the resulting blurred blocker image is
projected onto receiver objects. Max applied the convolution technique to render
penumbras caused by occluded sunlight and skylight underneath trees [15]. Soler et
al. extended the convolution technique to more general situations, and utilized
hardware to create soft shadows relatively quickly [25]. However, surfaces cannot
accurately shadow themselves by this method.

Most of the above methods attempt to be completely general in their treatment
of light sources. Other work has been done on specific types of light sources, such as
sunlight or linear sources [20,28]. Our work addresses light sources that are
moderately small in extent. A single MDI only gives completely accurate visibility
from a single viewpoint, but the visibility is approximately correct for nearby
viewpoints, as has been demonstrated by Max in [16] and Shade in [24]. Thus, a
single MDI is adequate to approximate the visibility for all points on the light source
if the light source occupies a reasonably small area. In this sense, our algorithm is not
completely general and will not handle an arbitrarily large light source.

The remainder of the paper is organized as follows: Section 2 reviews the z-
buffer shadow algorithm and percentage-closer filtering. Section 3 outlines the new
method, and explains how filtering of depth buffer samples corresponds to the partial
visibility of the light source. Section 4 provides implementation details and provides
examples of penumbras rendered by this method. Section 5 concludes the paper with
a discussion of the method’s advantages and disadvantages, and directions for future
work.

2 Z-Buffer Shadows and Percentage Closer Filtering

The z-buffer shadow algorithm is a two-pass technique originally conceived by
Williams [29]. It is a hard shadow algorithm in that it only works for point light
sources and does not produce penumbras. The scene is rendered into a z-buffer from
the point of view of the light source, using coordinates we call shadow space. The
depth is all that is entered into each z-buffer element during rendering, and a greater
z-value indicates greater distance from the light. Assuming the scene has already been
rendered into a z-buffer in camera space, we can compute shadows as a post-process
by mapping each camera z-buffer point to a location in the shadow map. The z-value
at that shadow map location is compared to the z-value of the mapped point. If the
point’s z-value is greater, the point is considered occluded and the illumination of the
corresponding camera z-buffer entry is attenuated appropriately.

This shadowing technique enjoys great advantages while simultaneously
suffering from major disadvantages. Its main advantage is that it can produce
shadows for anything that can be represented in a depth buffer, which is almost
everything. Even implicit surfaces, which are difficult to scan convert, can be placed
in a depth buffer by ray casting or they can be tesselated. Another advantage is the
algorithm’s capability to be implemented in hardware, which was demonstrated by
Segal et al. using texture-mapping hardware [23].

However, the shadows produced by the naïve approach are of poor quality. This
is due to two different aliasing artifacts. The first artifact is a stair-stepping effect
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along the edge of the shadow, which is due to inadequate shadow buffer resolution.
The second artifact is known as “surface acne,” and it is due to inappropriate self-
shadowing. In addition to these problems, the z-buffer shadow algorithm only works
for point light sources, and cannot be used to generate accurate penumbras except as
part of an accumulation-buffer type of scheme.

The above-mentioned aliasing problems can be reduced to a great extent by
percentage-closer filtering [22]. This method samples the bounding box in shadow
space of the transformed camera space pixel’s area using jitter. Each sample’s z-value
is compared to the z-value of the transformed point, with a random bias added. If the
sample’s z-value is found to be lower, the sample is considered to be occluding the
point. After the comparisons have been made, the proportion of occluding samples
determines the fraction of shadowing.

The end result of the filtering is an antialiased shadow edge with the stair-
stepping artifact removed. The random bias helps to remove the self-shadowing. The
algorithm works well because of the properties of the stochastic sampling process.
Jittering the samples effectively replaces the aliasing with random noise, which is a
much less disturbing visual artifact.

One main criticism of the algorithm is the large amount of sampling parameters.
Perhaps the most difficult parameters to adjust are the upper and lower bounds of the
random bias. There is a fine line between too much surface acne and too much
shadow displacement. Grant et al. developed an interesting solution to this problem
involving the storage of normal vectors along with z-values in the depth buffer [8].
With the added normal information, the depth variation over a shadow map pixel can
be modeled more accurately.

Woo proposed another solution to the bias problem, in which the average of the
two closest depths is stored at each pixel instead of the closest depth [32]. By doing
this, depth values are offset enough to prevent self-shadowing, but not so much as to
prevent shadows on other possible receivers. Unfortunately this solution is not easily
incorporated into the new method presented here due to the importance of knowing
the actual surface depths.

Modifications to the percentage closer filtering algorithm can simulate
penumbras by accounting for distances between objects in the scene. As a blocker’s
distance from a receiver increases, the shadow edge can be blurred more to account
for the increased separation. Partial success in generating penumbras from a single z-
buffer using this idea was presented in [12]. Another implementation of this idea was
used to create the shadows in the movie ANTZ by Pacific Data Images [30].

3 Depth-Dependent Filtering

3.1 Overview

At this point, we will give a brief overview of the steps taken in the depth-
dependent filtering algorithm. The next few subsections will explain in detail the
reasons for each step of the process. Then, in section 4, the algorithm will be outlined
in greater detail.

First, an MDI is obtained that represents the view from the center of the light
source. This MDI is preprocessed by dividing the entire depth range uniformly into
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disjoint depth buckets along the direction of light propagation. Next, a pixel in camera
space is transformed to the coordinate frame of the MDI. The pixel area is
transformed as well. Points are chosen on the bounding box of the transformed pixel
area using jittered sampling on a regular grid. After testing for self-shadowing by
using a z-buffer shadow algorithm, a ray is traced to the light source from each of
these sample points. The subdivision of the MDI helps make the ray tracing more
efficient and more accurate.

3.2 Ray Tracing the MDI

The process of tracing shadow rays through a parallel-projected MDI is shown
on the left in Fig. 1. In the figure, each column represents a layered depth pixel of the

MDI. A thick black line across a layered depth pixel represents an individual depth
pixel. This is a 2-D cross-section of the MDI, with depth varying vertically and the x-
coordinate of the image varying horizontally. The shadow rays go to the light source
from the shadow receiver, which is a pixel transformed from camera space to the
MDI coordinate frame. Following the image-based ray tracing method used by
Lischinski et al. [14], a ray intersects a depth pixel if the pixel’s depth falls within the
Zmin and Zmax of the ray as it crosses the layered depth pixel. The figure shows two
rays, one that intersects a depth pixel and one that misses all depth pixels.

Notice that the depth pixels on the left seem to lie in a fairly straight line,
indicating that they may all correspond to the same object. For example, a polygon
that appears extremely slanted from the viewpoint of the light source may exhibit this
behavior. With traditional ray tracing, the ray would intersect the object. However,
note that with image-based ray tracing the object may be missed completely. This
problem is known as light-leaking. To help reduce the light-leaking problem, we
subdivide the MDI uniformly into separate regions of depth. We call these regions
depth buckets. This is shown in the center of Fig. 1.

Instead of testing rays against depth pixels, we compute the intersection of a ray
with the boundary between two buckets. Depth pixels from both buckets contribute to
the boundary and form a blocker image. This essentially rounds each depth pixel to

Fig. 1 The light leaking problem and reducing it by rounding to discrete depth levels



6

two discrete depths. The effect of doing this is shown at the right of Fig. 1, and notice
that the light leak is removed. Although this changes the geometry of the scene, the
net result is usually an imperceptible increase in the size of the shadow boundary.
This problem is far less visually disturbing than having light appear to leak through a
solid object.

In terms of implementation, we do not actually produce blocker images. Instead,
we store a bitmask at each layered depth pixel that indicates which buckets contain
depth pixels. For example, a 32-bit word can be used to describe 32 depth buckets at a
pixel. The ray-object intersection method relies upon these bitmasks. When a ray
intersects a depth bucket boundary, the intersection point occurs at a particular
layered depth pixel. At this pixel, we check the two bits in the bitmask corresponding
to the two buckets forming the boundary. Checking these two bits essentially checks
for a ray-object intersection, and can be done with a single logic operation.

Fig. 2 graphically illustrates this process. Each black dot indicates that depth
pixels are present in the relevant bucket at the relevant layered depth pixel. Thicker
black lines indicate the depth pixel contributions to the boundary blocker images. Ray
crossings at the boundaries are shown as small circles in the figure. The bits that are
checked at each layered depth pixel are shaded. If the bit for either bucket is 1, we
count that as a ray-object intersection.

Organizing the MDI into buckets in this fashion leads to several optimizations.
First, it dramatically reduces the number of depth comparisons necessary for ray
intersections at a layered depth pixel. Rather than iterate through the entire list of
depths, we merely check the appropriate bits in a bitmask. Second, since all objects
are assumed to be at uniformly spaced depths, we can step the rays through the MDI
with uniform increments. These advantages, in concert with the reduction of light
leaks, make this approach attractive despite the approximations made. A third
important optimization uses the bitmasks to avoid unnecessary memory accesses. The
range of layered depth pixels rays could hit is found, and the bitmasks of these pixels

Fig. 2 Using bitmasks to perform ray-object intersections. Shaded bits are the ones
checked at each layered depth pixel.

1

2

3

4

5

6

bucket:

0
1
0
0
0
0

1
0
0
0
1
0

1
0
0
0
0
0

0
1
0
1
0
0

0
0
1
0
0
0

1
0
0
0
1
0

0
1
1
1
0
0

0
0
1
1
0
0

bitmasks:



7

are or-ed together into a local
variable. Since usually only a small
proportion of buckets contain depth
pixels, this variable can be used to
cull a lot of processing and memory
accesses.

The traced rays emanate from
the transformed pixel area. We
choose the emanation points by
taking jittered samples of the
transformed pixel area’s bounding
box. In our implementation, we trace
one ray per jittered sample. We have
found that for a given number of rays,
the shadows visually look better if we
do not also select the ray direction in
a random fashion. In traditional
distributed ray tracing, rays emanate from a surface with a random direction
determined by the location of a random sample on the light source. In our
implementation, we deterministically choose the ray direction based upon its starting
location on the transformed pixel area. We choose the direction so that the rays
intersect each blocker image with scaled versions of the same intersection pattern. By
doing this, we are essentially correlating points on the pixel area with points on the
light source, which is akin to a mapping operation. This is shown in Fig. 3. In the
figure, the bottom line represents the receiver and the top line represents the light
source.

Our method can be viewed as a solution to the problem of how to combine the
effect of multiple blocker images. In [15,25], ad-hoc methods were used to combine
occlusion from different overlapping blocker images. By using ray tracing, we are
proposing a consistent and intuitive solution to the problem.

3.3 Filtering the MDI

Now that we have a method for tracing rays through the MDI, we can see how
that method can be interpreted as a filtering method. This will be useful to us in
several ways. First, we can easily incorporate pixel-area antialiasing by combining
percentage closer filtering with our partial visibility algorithm. Second, we can adjust
filter weights to approximate shaped light sources. Third, we can more directly
compare our method with convolution methods for producing penumbras.

As mentioned in the previous section, the ray directions are chosen so that the
intersection pattern is the same on each blocker image. However, as shown in Fig. 3,
the pattern is scaled according to the relative distance from the transformed point. We
can view this pattern as a filter that is performing area-averaging on each blocker
image. Due to the way our ray directions have been chosen, the filters applied to the
blocker images are all scaled versions of the same filter. Throughout the paper, the
term filter will be used often to describe the area of a blocker image through which
rays could possibly travel.

Fig. 3 Deterministic rays create similar patterns
on blocker images.
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For the case of the parallel MDI, filter sizes for each blocker image are
computed using the solid angle of the light source. The solid angle is used because the
light source area is constant from all viewpoints, as with sunlight. In this case,
visibility rays are confined to a cone of the same solid angle. For a particular
transformed pixel, the volume of all possible rays will be the union of all such cones
whose apex is a point on the transformed pixel area. The intersection of this volume
with the blocker image plane yields the appropriate filter size for that blocker image.

This method can now be directly compared to convolution methods for
calculating soft shadows. Convolution methods would convolute each blocker image
with an image of the light source. We are convoluting each of these images with
scaled versions of the same filter. Thus, by making the comparison between methods,
our filter can be interpreted roughly as a representation of the image of the light
source (it is really more like an approximate convolution of the pixel area and the
light source image). If we change the weights on the filter, we can change the
apparent shape of the light source. For example, if we set all corner weights on a filter
to 1 and the remaining weights to 0, this would model four separate light sources at
once. As another example, setting a row of filter weights equal to 1 and the rest 0
would model a linear source. An isotropic filter was used to model sunlight in the
images provided in the color plates.

3.4 Self-Shadowing Surfaces

We do not discard the original depths contained in the MDI because we want to
accurately produce self-shadowing effects. The z-buffer shadow algorithm is an
excellent algorithm for computing self-shadows on complex surfaces, especially when
percentage closer filtering is used. Since our algorithm is essentially based upon the z-
buffer shadow algorithm (since we are using a multi-layer depth buffer), accurate
self-shadows are possible if the actual depth pixels are accessed.

We mix the ray-tracing/filtering methods outlined above with a simple z-buffer
shadow algorithm. The transformed pixel is mapped to a layered depth pixel location,
as is done in the z-buffer shadow algorithm. Also, its depth occurs within the range of
a particular depth bucket. Depth comparisons are made as in the z-buffer shadow
algorithm, however only the depth pixels that are in that bucket and the next bucket
are considered. The depth bias used in the z-buffer shadow algorithm may push the
transformed point into the next bucket, in which case only depth pixels from the next
two buckets are considered.

The depth pixels in these two buckets normally combine at their mutual
boundary to form a blocker image. However, some of those depth pixels may actually
be behind the transformed point. The depth comparisons serve to remove these pixels
from the blocker image. To be consistent with our ray-tracing scheme, the appropriate
filter size for the blocker image depth is used. Recall that the filter size on a blocker
image determines the area through which visibility rays travel. In terms of
implementation, this filter is applied using a method that closely mimics the
percentage closer filtering algorithm.

3.5 Finite Light Sources
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A perspective-projected MDI is used for the case of finite light sources. The
actual 3-D Euclidean distance from the center of the light is stored in each depth
pixel. This is done to ease the combination of the self-shadowing algorithm with the
ray-tracing algorithm. If an orthographic projection was used, the z-buffer shadow

algorithm would not accurately compute self-shadowing. Also, a perspective
projection that stored a non-linear depth would complicate the ray-tracing algorithm.

By using a perspective projection and storing Euclidean depths, the algorithm is
essentially the same as in the parallel case. The major difference is in the computation
of the filter sizes. Intuitively, a square light on the ceiling will not appear to be square
when viewed at an angle. Also, the filter will not grow linearly with depth as it did
with a parallel light source.

We present a 2-D argument based on similar triangles to calculate the filter sizes
for each depth bucket. We assume that the argument is independently valid for both
dimensions of the filter. This is not entirely accurate, however it guarantees that the
filter will remain rectangular.

At the left of Fig. 4 is a 2-D representation of the situation for finite light
sources. The light is represented at the top of the figure by a line of length a. The
transformed point occurs at x, which is an angle θ from the center of the projection.
The line across the upper part of the light source frustum is the screen onto which all
depth pixels are projected. Each pixel address on the projection screen represents a
layered depth pixel, each of which contains a list of depth pixels and a bucket
bitmask. The volume containing all rays from x to points on the light source is drawn,
and the line across it represents a bucket filter located at the minimum bucket depth.

Since depth is stored as Euclidean distance, uniform subdivisions in depth result
in shell-like bucket regions. Thus, the filter size tangent to the shell is desired. Using
the projected size of the light source, the filter size is found by similar triangles:

bucketsize a
depth depth

depth
x bucket

x

= ⋅
−






cos( )Θ

Fig. 4 Similar triangles argument for stepping rays through a perspective MDI.
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However, this doesn’t indicate how many layered depth pixels the filter covers.
To find this, we use another similar triangles argument (see the right of Fig. 4). The
projected size of the filter is given by:

Eliminating the intermediate variable bucketsize, we discover the relationship
between depthx, depthbucket and the parameters of the MDI. Using a geometric
substitution for cos(θ):

To find the screen size in the y direction, we simply substitute y for x in the
above equation. Obviously, there is a non-linear dependence of the projected filter
size on the minimum bucket depth. Thus, constant additive increments cannot be used
to step rays from boundary to boundary. However, the difference in depth between
filters is kept constant. Let D denote this depth difference. Also, the minimum depth
of a particular bucket will be some multiple of D, plus the distance from the light
source to the minimum depth B of the closest bucket. If the minimum depth of a
previous bucket is given by KD+B, then screensize of the next bucket can be
calculated from the screensize of the previous bucket by using the following iteration:

where C=abDcos(θ). The number K is simply the enumeration of the bucket, where
K=0 indicates the closest bucket to the light source. This is a convenient
representation, since C only needs to be calculated once per transformed pixel, and
the enumeration of the buckets is readily available.

The above calculations compute the intersection of the volume of rays from a
point with a blocker image. Recall that there are several sample points on the
transformed pixel area from which rays can emanate. The actual filter size is found by
considering all ray volumes emanating from the pixel. We calculate the ray
intersection area from the center of the pixel and add half to each side of the pixel
area. This is a good approximation to the actual area of intersection if the pixel area is
small enough, which is usually the case.

4 Implementation Details and Results

4.1 Implementation Details

The entire visibility-testing algorithm is contained in a single routine. A skeletal
pseudocode description is contained in Fig. 5. The input is the point to be shadowed
in shadow space coordinates, and the bounding box of the transformed pixel area. The
output is a percentage of shadowing, which is used to attenuate the illumination of the
camera-space pixel or subpixel fragment. It is assumed that pixel3D occurs in the

bucketsize depth
screensize

bbucket
x= ⋅

screensize
ab

x

depth depth

depth depthx
x bucket

x bucket

=
+

⋅
−
⋅









2 1

screensize screensize
C

KD B K D Bnext previous= +
+ − +( )(( ) )1



11

middle of the box defined by pixelsize. The variables ray_x and ray_y are coordinates
of jittered samples in the box.

For clarity, one simple optimization was left out of the pseudocode. Before
iterating through all depth pixels in the second for loop, it is a simple matter to check
if any depth pixels exist in the current or next depth bucket by first checking the
bitmask at MDI[ray_x][ray_y]. If the bitmask indicates there are no depth pixels in
those buckets, there is no need to iterate through the depth pixels and the z-buffer
self-shadowing test can be skipped.

The filter calculation details were also left out of the pseudocode for clarity. To
compute the appropriate filter size at a boundary, the volume of possible rays must be
considered. The distance of the transformed point to the boundary is used to increase
the size of the filter according to the volume. For the example of an infinite light
source with a specified solid angle, the filter would be increased on each side by this
distance times the tangent of the angle. For finite light sources, the arguments
outlined in Section 3.5 would be applied. Filters are recalculated for each transformed
pixel, in order to guarantee smooth variation of penumbra width as the transformed
pixel moves from one bucket to the next.

A few words should be said about how the depth pixels are stored. As in [24],
we compute the MDI by first inserting depths into a linked list at each layered depth
pixel. This allows for quick insertion without copying or re-ordering. Then, we
collapse the depth pixels into a compact data structure. We use an array of structs, and
each struct contains 1) a memory offset into a linear depth array, which is given the
value of –1 if the layered depth pixel is empty, 2) the number of depths attributed to
this layered depth pixel, and 3) the bitmask describing the presence of depth pixels in
each bucket. For a MDI with resolution P by Q with R bytes used in the bucket
bitmask (R=4 for 32 buckets), the memory requirement is then PQ(R+8) bytes, where
it is assumed that 4-byte words are used for the memory offset and the depth count.
Every MDI requires at least this much memory.

The depths are compactly stored in a linear depth array, and are only accessed as
needed by using the memory offset. To iterate through all depths at a layered depth

Shadow( MDI[len][wid], pixel3D, pixelsize )
  Find bucket that encloses pixel3D based upon pixel3D.z;
  Find filter size at closest boundary using pixelsize;
  For(i=all jittered samples on pixel=(ray_x,ray_y))
    Compute random bias;
    Adjust sample location and current bucket due to bias;
    For(d=all depth pixels in MDI[ray_x][ray_y])
      If(d.z<pixel3D.z-bias)&(d in current or next bucket)
        inshadow += filterweight[i]; next i;
      else shoot a ray
        while(bucket>=0)
          Increment ray_x, ray_y;

  If(MDI[ray_x][ray_y].bitmask shows intersection)
             inshadow += filterweight[i]; next i;

  Decrement bucket;
  return inshadow/total_filter_weight;

Fig. 5 Pseudocode description
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pixel, we first add the offset to the start of the array. To get the remaining depths, we
increment this pointer a number of times equal to the number of depths stored at that
layered depth pixel. The depth array has a memory requirement of 4S, where a 4-byte
word is used to store each depth and there are a total of S depth pixels in the entire
MDI. Thus, the total memory requirement of the processed MDI is PQ(R+8)+4S. As
an example, a 512x512 MDI with 32 buckets and an average of 4 depth pixels per
layered depth pixel requires about 7 megabytes.

4.2 Discussion of Deterministic Ray Tracing

We have compared the results of our deterministic ray-tracing approach to that
of tracing a random ray at each sample. We found that although intuitively it is more
accurate to trace random rays, the shadows look worse due to additional noisiness in
the shadow. This is a typical bias vs. variance problem. By preventing valid ray
directions that may (or may not) reach the light source, we bias the size of the shadow
in order to reduce the variance. This bias should not be confused with the depth bias
used in the z-buffer shadow algorithm.

One way to understand the bias is to view it in terms of the direct correlation
between points on the pixel and points on the light source. Essentially, we
approximate the four-dimensional integral over the light source and the pixel as a
two-dimensional integral, by constructing a one-to-one mapping between points in the
two areas. The correlation introduced by the mapping makes the two-dimensional
integral a biased approximation of the four-dimensional integral. Mathematically, the
approximation can be described as follows:

In the above equation, V(x,y) is the visibility function between points x on the
pixel and points y on the light source. In the case of parallel light sources, y would
represent a direction within the cone of the appropriate solid angle. The function f(x)
is a one-to-one function that maps each pixel point x to a unique point (or direction) y
on the light source.

We chose f(x) to be the rectangle-to-rectangle mapping [Au,Bv]→[Cu,Dv] where
[u,v] are in the range [0,1], the pixel is a rectangle of dimensions AxB, and the light
source is a rectangle (or a rectangular approximation to a cone of ray directions) of
dimensions CxD. This mapping generates a fan-like distribution of rays emanating
from the pixel area. It has several desirable properties. First, it is a one-to-one
mapping. Second, the set of rays generated by this mapping fills the same volume as
the original set of possible rays from the four-dimensional case. Third, it creates
scaled versions of the same intersection pattern on each blocker image, as mentioned
in Section 3.2.

By reducing the dimensionality of the integral, we are able to obtain a lower
variance result with the same number of samples. We essentially perform Monte
Carlo integration on the right hand side of the above equation by using stratified
sampling over the pixel area. Stratification helps to reduce the variance compared to
uniformly random sampling patterns [19]. Discussions of the relationship between the
dimensionality of the sample space and the variance in computer graphics problems

V x y dxdy V x f x dx( , ) ( , ( ))
r r r r r r r∫∫ ∫≈
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can be found in [18,19]. A variance measurement experiment involving four-
dimensional double-area integration can be found in [18].

A comparison between tracing one random ray at each pixel sample versus
tracing one correlated ray at each pixel sample is given in the color plate. By looking
at the shadows of the poles, the variance difference is most noticeable. The variance
presents itself as a noisy pattern in the penumbra. By comparing the shadows of the
bush, the bias difference is most noticeable; certain areas that are illuminated in the
random case are not present in the deterministic case, and the shape of illuminated
areas are slightly different. Based upon comparisons like these, we decided that the
bias error is more tolerable than the variance error for a given number of samples.

4.3 Results

All images were rendered using a program developed in-house in C++. The
visibility algorithm used for rasterizing polygons in camera space was a modified
version of the A-buffer [3], with 64 bits per pixel used for subpixel antialiasing. This
algorithm was chosen for its close relationship to the MDI, and for its antialiasing.
The program was executed on a 300Mhz Pentium II-based machine running Windows
NT4, with 128 megabytes of RAM. All shadow computation times do not include the
time spent rendering the MDI, since the MDI rendering process is independent of the
shadow algorithm. We used a polygon-based renderer that typically produced an MDI
in about a second. All times were found using the clock function. All rendering was
done in software.

Each image was rendered at 256x256 resolution. Since our algorithm computes
the shadow for each pixel individually, it is essentially an O(pqNR) algorithm for each
light source, where p and q are the dimensions of the final image, N is the number of
buckets, and R is the number of rays per pixel. Thus, our algorithm fits in well with
most of image-based rendering, since it is independent of geometric complexity.

We used 32 buckets in all situations, and 36 samples/rays per pixel. Increasing
the number of buckets helps to increase accuracy to a point, but light-leaking becomes
more of a problem and the efficiency begins to drop as the number of buckets gets
higher. Using fewer buckets helps make the method faster, however the
approximations made in geometry start to become more noticeable. We chose to use
32 buckets because it works well in most situations and fits neatly into a 32-bit word.

A standard resolution of 512x512 was used for all of the shadow MDIs. The
speed of the algorithm is fairly insensitive to MDI resolution, however it can be
sensitive to the number of depth pixels contained at a particular layered depth pixel. It
is especially sensitive when there is a lot of self-shadowing, since it is for those cases
that we must iterate through the entire list of depth values at a layered depth pixel.

To demonstrate the running time of the algorithm on a typical bad case, we used
a dense tree, shown in the color plates. The filter size was selected to model sunlight.
The MDI was allowed to contain any number of depth pixels at each layered depth
pixel. For this model, the maximum number of depth pixels at a layered depth pixel
was 112, and the average number over non-empty layered depth pixels was 19. The
shadow was computed in 18.6 seconds. We feel that this is a fast time, since we are
tracing rays through an enormous MDI. This shadow would be extremely difficult to
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compute using geometry-based methods, since the model contains 1,237,614
polygons.

The algorithm also tends to run slower if the size of the light source is larger.
This is due to increased numbers of shadowed pixels and random memory accesses;
thus it is not included in the algorithmic complexity argument given above. The color
plates show a sunlight image, rendered in 2.5 seconds, and an image containing a
parallel light with 10 times the sunlight solid angle, rendered in 9.5 seconds. For the
finite light source examples, the light is modeled as a square source directly above the
bush in the images. The poles are 30 units high, and the light source is positioned 25
units above them. The images show square light sources that are 4x4 and 8x8 in size,
with shadows computed in 11.8 and 20.6 seconds, respectively. The field of view of
the light sources was approximately 77 degrees.

A simulation of multiple light sources using a single filter is shown in the color
plates as well, with a shadow computation time of about 4 seconds. The filter was an
8x8 filter, with each 3x3 corner isotropically weighted. Rays corresponding to zero
filter weights were ignored.

5 Conclusions and Future Work

We have implemented a soft shadow algorithm that filters an MDI that
represents the visibility from the light source. We have demonstrated how this
algorithm efficiently traces rays through the MDI, and how the ray tracing
corresponds to a filtering process. We have also shown how our algorithm relates to
convolution methods, and how our algorithm intuitively blurs shadow edges
according to the geometry of the scene.

Our algorithm has several advantages over other methods. It correctly produces
self-shadowing for complex objects. In addition, the time complexity is independent
of geometry. Also, it was designed to be applicable to image-based rendering
situations, unlike most other soft shadow algorithms. The shadow computations are
also reasonably fast given that the implementation is entirely in software.

Our algorithm also has several disadvantages. First of all, it is an approximation.
However, approximate shadows are acceptable for many situations, as was argued in
[25]. Another disadvantage is that our algorithm only works for light sources of
moderate size. The fact that we are using MDIs makes this a high-memory-cost
algorithm. The algorithm does not compute shadows at interactive rates, and the
solution cannot be redisplayed interactively as in [10]. We feel that the shadow
computation times could be improved if we could better exploit memory coherence.

Although we have reduced the light-leaking problem significantly, it has not
been completely removed. The possibility still exists that light may leak through. A
complete solution would treat the MDI used in the examples as a 512x512x32
collection of voxel-like slabs, and test against the sides of the slabs as well as the top
and bottom. This would slow our implementation significantly, since it would be
difficult to incorporate into our efficient bit-based scheme. We have yet to see light
leaks happen for the types of light sources for which the algorithm was designed.

Like the z-buffer shadow algorithm, this algorithm suffers from resolution
issues. If a particular area in the scene is sampled at high resolution in camera space
(for example, objects very close to the camera in a perspective projection) but is
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sampled at a significantly lower rate in the MDI, the shadows will be of poor quality.
Antialiasing over the pixel area is usually sufficient, but not in extreme situations. As
a subject of future study, we are looking at ways to adaptively adjust the MDI
resolution according to the relative positions and orientations of the camera, the light
source and the surfaces in the scene.

The most noticeable artifact in the shadows is the random noise. We reduced the
noise to a degree by putting a bias on the shadow size, which is less noticeable.
Allowing multiple rays per pixel sample can reduce the noise without increasing bias,
however this is significantly more expensive. We are currently working on image
processing approaches based upon the wavelet transform to reduce noise as a post-
process. This will hopefully allow us to use an unbiased integration scheme with
fewer samples than is typically necessary, and still obtain penumbras with low noise
levels.
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Fig. 5 Images from
infinite light sources.
A sunlight image is
on the left and a 10x
sunlight image is on
the right. Shadow
computation times
are 2.5s and 9.5s
respectively.

Fig. 6 Images from
finite light sources. A
4x4 square light is
used on the left and
an 8x8 square light is
used on the right.
Shadow computation
times are 11.8s and
20.6s respectively.

Fig. 7 Deterministic
rays on the left vs.
random rays on the
right. Notice the
tradeoff between
increased bias on the
left and increased
variance on the right.
Both shadows
computed in ~10s.

Fig. 8 (left) A
demonstration of
self-shadowing using
a dense tree in
sunlight, shadow
computed in 18.6s.
Fig. 9 (right) Using
filter weights to
simulate multiple
light sources with
one filter.


